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tour dynamics (CD) for inviscid incompressible fluids in
two dimensions.We present a contour dynamics algorithm for the Euler equations

of fluid dynamics in two dimensions. This is applied to regions of The CD method does not use an underlying lattice and
piecewise-constant vorticity within finite-area-vortex regions is a generalization of the ‘‘water-bag’’ model used to study
(FAVRs). Essentially, this reduces the dimensionality by one and plasma dynamics [5, 6]. In essence, it amounts to a dynamic
we are treating the interaction of closed polygonal contours whose

interaction among closed contours enclosing FAVRs. Thatnodes are advected by the total fluid motion computed self-consis-
is, we have reduced the dimensionality by one. To obtaintently. A leapfrog centered scheme is used for temporal advance-

ment. Computer simulation results are given for two and four like- this great simplification, we assume that each FAVR has
signed interacting FAVRs. In all cases wavelike surface deformations a constant vorticity density of arbitrary magnitude.
are observed. If the distance between FAVRs is comparable to their In this paper we present computer simulation results for
extent (‘‘diameter’’), these surface deformations are large. They play

one, two, and four interacting like-signed FAVRs. Thean essential role in the observed coalescence of FAVRs. Q 1979

latter two simulations show large-amplitude wavelike de-Academic Press

formations resulting from self and mutual interactions. We
believe these deformations play an essential role in the

1. INTRODUCTION stability and coalescence phenomena observed for coher-
ent structures in fluids [7]. Generalizations of the method

High Reynolds number flows in two dimensions almost and error analyses will be described in future publications.
always develop finite-area-vortex regions (FAVRs) with
steep sides. The evolution of these incompressible flows

2. CONTOUR DYNAMICS ALGORITHMinvolves the self and mutual interaction of these de-
formable FAVRs.

A. Continuum FormulationWhen finite-difference methods are used to simulate
these flows, a high mesh resolution is required to avoid The incompressible, inviscid Navier–Stokes equations
introducing grid-scale dissipation and dispersion errors. (Euler equations) in two dimensions can be written in
To overcome these difficulties, Chorin [1] has proposed a ‘‘vorticity’’ form as the coupled set of equations
vortex scheme which advects nondeformable FAVRs with
a velocity composed of two parts: a deterministic compo-

gt 1 ugx 1 vgy 5 0, (1)nent calculated from the existing vorticity distribution, and
a zero-mean Gaussian random component to simulate dis- =2c 5 cxx 1 cyy 5 2g, (2)
sipation. The advantages and disadvantages of the pro-
posed method are under active investigation for shear flows

and[2] and cavity flows [3].
The motivation for the present study arose when Chris-

tiansen and Zabusky [4] studied the stability of the inviscid u 5 cy , v 5 2cx ,
(3)von Kármán wake in two dimensions. They used a two-

g 5 2uy 1 vx .dimensional point vortex-field code and noted the im-
portant effects of induced waves on the surface of FAVRs.
To elucidate these nonlinear wave effects with a moderate Regions of positive vorticity or circulation correspond
amount of computation we introduce the method of con- to counterclockwise motions of convected fluid elements;

that is, we are studying a right-handed coordinate system
where the vorticity vector is along ez 5 ex 3 ey .Reprinted from Volume 30, Number 1, January 1979, pages 96–106.

We write the stream function at (x, y) as an integral* Present address: Department of Mathematics, University of Pitts-
burgh, Pittsburgh, PA 15260. over all the FAVRs
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For clarity, we append at times the subscript j or x to the
gradient and Laplacian operators. That is,

=j 5 ex­j 1 ey­h and =x 5 ex­x 1 ey­y .

We decompose the integral of (8) into two parts: the
large area within the contour where =j g 5 0 contributes
nothing, and the small strip following the contour where
=j g is singular yields a finite contribution. On the contour,
we introduce the localized s, q orthogonal coordinate sys-
tem as shown in Fig. 1, where area dq ds 5 dj dh. This
transformation with unit Jacobian holds if the contour is
piecewise continuous. (That is, the tangent and normal
directions may jump discontinuously.) Thus,

­j g 5 (­qg)(dq/dj) and ­hg 5 (­qg)(dq/dh), (10a)

or

­j g 5 [g] d(q) cos(n, j) 5 [g] d(q) sin u,
(10b)

FIG. 1. (A) Definition of quantities for a finite-area-vortex region ­hg 5 [g] d(q) cos (n, h) 5 2[g] d(q) cos u,
(FAVR) of strength gI . (B) Definition of quantities for a piecewise-
linear contour.

where

[g] 5 gu0 2 guI ,
c(x, y) 5 2(1/2f) E da g(j, h) log(r/R), (4)

(see Fig. 1A), and d(q) is the delta function with q mea-
where da 5 dj dh, sured positively in the en direction. The x and y components

of the direction cosines are cos (n, j) 5 sin u and cos (n,
r2 5 (x 2 j)2 1 (y 2 h)2, (5) h) 5 2cos u. If we replace the components of =j g using

(10b) and perform the q integration, we obtain
and log (r/R) is Green’s function of Poisson’s equation
(2). We have inserted the normalizing constant R for con-
venience in writing algorithms. All pertinent quantities are u 5 (2f)21 ONc

j51
[g]j R

j
log

r
R

[ex cos uj 1 ey sin uj] dsj ,

(11)
depicted in Fig. 1. The velocity at any point in the flow
field, in particular on closed contours, is

u 5 (2f)21 ONc

j51
[g]j R

j
log

r
R

[ex djj 1 ey dhj],u 5 = 3 ezc 5 excy 2 eycx (6)

or where [g]j is the value of [g] associated with contour j.
Hence the constant vorticity regions have been replaced by

u 5 (2f)21 E da g[ex­h log(r/R) 2 ey­j log(r/R)],
(7)

a distribution of sources with logarithmic strengths along
contours (labeled with the index j) surrounding Nc regions

­y R 2­h and ­x R 2­j in the field.

because of the definition (5). Integrating (7) by parts yields 2B. Spatial Discretization

We assume that the contour bounding one FAVR is au 5 2(2f)21 E da log(r/R)[ex ­hg 2 ey ­j g], (8)
polygon with N nodes and now consider their interactions.
As depicted in Fig. 1B, along each segment of length hn

5 (2f)21 ez 3 E da(log(r/R)) =j g. (9) between nodes n and n 1 1, r is approximated by r̃,
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If n 5 1 is identified with the point (x, y) thenr̃ 2 5 (x 2 jn 2 j9)2 1 (y 2 hn 2 j9 tan un)2, (12)

or (Du)N 5 (2f)21[g] hN(log(hN/R) 2 1) (20)

r̃ 2 5 r2
n(1 2 2zen 1 z 2), (13) and

where rn is the distance from node n to (x, y) (usually (Du)1 5 (2f)21[g] h1(log(h1/R) 2 1). (21)
another node), fn is the associated angle, and

Furthermore, the contribution from distant nodes (hn/rn !
en 5 cos(fn 2 un), (14) 1) may be obtained from an asymptotic expansion of (18)

or more directly by expanding (17) in an asymptotic seriesz 5 (j 2 jn)/(rn cos un) 5 j9/(rn cos un), (15)
and integrating,

and
(Du)n 5 ([g]/2f) hnhlog(rn/R)

tan un 5 (yn11 2 yn)/(xn11 2 xn).
2 Asen(hn/rn) 1 Ah(1 2 2e2

n)(hn/rn)2 (22)

1 Afen(1 2 Fde2
n)(hn/rn)3 1 O(hn/rn)4j.For one FAVR, Eq. (11) can be discretized as

A similar procedure may be followed to find interactionsu 5 ON
n51

(Du)n (ex cos un 1 ey sin un) (16)
among nodes on different contours.

2C. Temporal Discretization(since un and fn are identified with node n) and

We now identify (x, y) with a node of a FAVR, or (xm ,
(Du)n 5 (1/4f)[g] rn E(hn/rn)

0
log(r̃/R)2 dz (17) ym). Each node is convected with the local fluid velocity, or

u(xm , ym) 5 ẋm 5 ẋmex 1 ẏmey

(23)
is the increment contributed by the linear segment between
nodes n and n 1 1. After some algebra we write

5 ON
n51

(Du)nm (cos unex 1 sin uney),

(Du)n 5 (1/4f)[g] hnhlog(rn/R)2

1 (1 2 enh21
n rn) log qn 2 2 (18) where (Du)nm is (Du)n of Eq. (18) with rn replaced by

1 2(1 2 e2
n)1/2 (rn/hn) tan21 (bn)j, (n ? 1, N),

rnm 5 [(xm 2 xn)2 1 (ym 2 yn)2]1/2, (24a)
where

and fn is
qn 5 1 2 2(hn/rn) en 1 (hn/rn)2

fnm 5 tan21[(ym 2 yn)/(xm 2 xn)]. (24b)

and Since we are dealing with a conservative system, we inte-
grate (23) using a centered leapfrog scheme, or

bn 5 (hn/rn)(1 2 e2
n)1/2/[1 2 (hn/rn) en]. (19)

(2Dt)21(xp11
m 2 xp21

m ) 5 ON
n51

(Du)p
nm (cos u p

nex 1 sin u p
ney).Note we have used

(25)
Re[zn log(1 2 hnz*n /rn)] 5 en log q1/2

n 2 (1 2 e2
n)1/2 tan21 bn ,

To start, one takes a forward time step on a reduced time
where interval, (Dt)s ! Dt, and then uses a doubling-up procedure.

Dts is chosen so that the errors in the initial step are consis-
zn and z*n are roots of 0 5 1 2 2 zen 1 z 2. tent with those in the later steps.
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observed rate of rotation was 12.758/unit-time compared to
the true rate of (360/9f) 5 12.738/unit-time. One notes a
slight difference in the shape of the ellipse, but overall the
agreement is good.

Figure 3 shows four cases of the interaction of two identi-
cal negatively signed (gI 5 21, g0 5 0) initially circular
FAVR’s of identical diameter D 5 0.6. The initial separa-
tions of centers were Lc 5 1.10, 1.022, 0.02, and 0.80, respec-
tively, or (D/Lc) 5 0.5455, 0.5871, 0.5882, and 0.75. Each
circle was discretized with N 5 30. At the largest separa-
tion, case 1, the FAVR’s rotated about one another in a
clockwise direction and induced wavelike perturbations on
their surface. As the initial separation, Lc , is decreased,

FIG. 2. The rotation of a Kirchoff elliptic vortex. Ratio of major-to- the deformations of the vortex surface increase. In case 2minor axis 5 2 : 1. N 5 60, Dt 5 0.2.
they ‘‘pulsate’’ toward one another and then withdraw,
leaving an extremely narrow region of vorticity between
them.

2D. Outline of the Calculation In case 3 they coalesce weakly and exchange ‘‘vortex
fluid.’’ We see a narrow region of vorticity creeping aroundInitially, the number of nodes Nj , shape, and vorticity
each FAVR. In case 4 they coalesce strongly and ejectof each FAVR ( j 5 1, ... J) is given. Nj is chosen sufficiently
vortex ‘‘arms,’’ a common feature of high Reynolds num-large to approximate a continuum curve.
ber fluid dynamic simulations. We stopped this run at thisUsing (16), and summing in addition over the J FAVRs,
time because the spacing of nodes had increased beyondwe obtain the velocity of each node. For convenience we
a tolerable amount.have adopted two formulas for (Du)nm :

In Fig. 4, we show the interaction of four identical
(1) (Du)nm 5 (2f)21[g] hm[log(hm/R) 2 1],

(26a)
negatively signed (gI 5 2 1, g0 5 0) initially circular
FAVRs of diameter D 5 1.0 and N 5 20 whose centersm 5 n 2 1 or n,
are placed on a circle of radius 1.16. This is a well-known

(2) (Du)nm 5 (2f)21[g] hm[log(rm/R)],
(26b)

unstable configuration and the manner of coalescence is
exhibited.m ? n 2 1 or n.

The first is obtained from (20) and (21). The second comes
from truncating the asymptotic series (22) after the first
term. The errors introduced by this convenient truncation 4. DISCUSSION
will be investigated at another time.

The new position of each node is obtained by solving We have presented a contour dynamics algorithm for
(25), as indicated. Dt is chosen such that incompressible inviscid fluids (Euler equations) in two di-

mensions. We assumed piecewise constant FAVRs and
Dt , Minhhn/Max u u(xn , yn)uj, (27)

discretized the contour by assuming an N-node polygon.
For moderate times we have presented high-resolutionwhere the Min–Max is over all nodes. For example, in the
results obtained with a moderate amount of computation.runs described in Section 3 Dt 5 0.2. For the duration of
To extend the algorithm to long times, one must examinethe runs performed the odd and even steps of the leapfrog
errors in spatial discretization and temporal advancement.solution did not fall out of ‘‘phase’’ and no temporal
As contours elongate and merge, one must add and deletesmoothing was used.
nodes as described in [5] for the Vlasov equation. Since
there is no underlying mesh, this is an efficient scheme for
very high Reynolds number flows.3. COMPUTATIONAL RESULTS

A variety of wave and breaking phenomena has been
observed in Figs. 3 and 4. When the distance of closestTo validate the CD algorithm, we examined the rotation

of a 2 : 1 ellipse with N 5 30 and Dt 5 0.2. As Lamb [8] approach of two or more deformable FAVR boundaries
is less than their ‘‘diameter,’’ self and mutual interactionsreports, the period of rotation is T 5 (2f/[g]) ? h(b 1 a)2/

baj or 9f for a 2 : 1 ellipse with [g] 5 1.0. The duration cause vortex ‘‘pulsation,’’ temporary and permanent co-
alescence, and the ejection of vortex arms. Such microscaleof the run was tF 5 99.799 and the observed rotation in

Fig. 2c was 1272.38 (a little over 3As revolutions). Hence, the phenomena are excluded a priori if one deals with nonde-
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FIG. 3. Interaction of J 5 2 initially circular negatively signed FAVRs of diameter D 5 0.6. (N 5 30 segments per circle, Dt 5 0.2). Initial
separations are: (1) 1.10; (2) 1.022; (3) 1.02; and (4) 0.80. [g] 5 11 and the gross rotation is clockwise.

formable vortex FAVRs or introduces ad hoc procedures We will apply the latter algorithm to study the stability
of the asymmetric vortex street. Von Kármán performedfor vortex coalescence [9].
a linear stability analysis for a street of point vortices andWork is now in progress to generalize the method of
found marginal stability only for a transverse-to-longitudi-contour dynamics for:
nal separation of (b/a 5 0.281). All other b/a ratios were

(1) stratified media described by the Boussinesq equa- unstable. Kochin et al. [10] showed that all point vortex
tions in two dimensions; streets are unstable if nonlinear terms are properly in-

cluded. We will seek to validate the conjecture of Christian-(2) periodic boundary conditions in x.
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FIG. 4. Interaction of J 5 4 initially circular FAVRs of diameter 1.0. The centers are located initially on a circle of radius 1.16 (N 5 20 segments
per circle, Dt 5 0.2). [g] 5 1 1 and the gross rotation is clockwise.

vanced Study. NJZ acknowledges conversations with G. S. Deem; thesen and Zabusky [4] that an asymmetric street where
hospitality of the above institutions; the generous support during 1971–(b/a) 5 0.281 is stable because of self-consistent wavelike
1972 of the J. S. Guggenheim Memorial Foundation and Bell Labora-

deformations of the FAVR boundaries. tories, Inc.; and the recent support of the Office of Naval Research under
Contract NR 062-583.
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